47 research outputs found

    Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    Get PDF
    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature

    Advanced molecular pathology for rare tumours: A national feasibility study and model for centralised medulloblastoma diagnostics

    Get PDF
    Aims: Application of advanced molecular pathology in rare tumours is hindered by low sample numbers, access to specialised expertise/technologies and tissue/assay QC and rapid reporting requirements. We assessed the feasibility of co-ordinated real-time centralised pathology review (CPR), encompassing molecular diagnostics and contemporary genomics (RNA-seq/DNA methylation-array). Methods: This nationwide trial in medulloblastoma (<80 UK diagnoses/year) introduced a national reference centre (NRC) and assessed its performance and reporting to World Health Organisation standards. Paired frozen/formalin-fixed, paraffin-embedded tumour material were co-submitted from 135 patients (16 referral centres). Results: Complete CPR diagnostics were successful for 88% (120/135). Inadequate sampling was the most common cause of failure; biomaterials were typically suitable for methylation-array (129/135, 94%), but frozen tissues commonly fell below RNA-seq QC requirements (53/135, 39%). Late reporting was most often due to delayed submission. CPR assigned or altered histological variant (vs local diagnosis) for 40/135 tumours (30%). Benchmarking/QC of specific biomarker assays impacted test results; fluorescent in-situ hybridisation most accurately identified high-risk MYC/MYCN amplification (20/135, 15%), while combined methods (CTNNB1/chr6 status, methylation-array subgrouping) best defined favourable-risk WNT tumours (14/135; 10%). Engagement of a specialist pathologist panel was essential for consensus assessment of histological variants and immunohistochemistry. Overall, CPR altered clinical risk-status for 29% of patients. Conclusion: National real-time CPR is feasible, delivering robust diagnostics to WHO criteria and assignment of clinical risk-status, significantly altering clinical management. Recommendations and experience from our study are applicable to advanced molecular diagnostics systems, both local and centralised, across rare tumour types, enabling their application in biomarker-driven routine diagnostics and clinical/research studies

    Frequency and Prognostic Impact of ALK Amplifications and Mutations in the European Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial (HR-NBL1)

    Get PDF
    Purpose: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. Materials and methods: Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). Results: Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. Conclusion: Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations.Key Objective: High risk neuroblastoma (HR-NB) is one of the most difficult childhood cancers to cure. This study examined whether the presence of an ALK alteration (amplification or mutation) was associated with a poor prognosis in a large patient series treated on the prospective European high-risk neuroblastoma trial (HR-NBL1). Knowledge Generated: We found that ALK amplification or clonal mutation was associated with inferior prognosis in patients with HR-NB and both are independent prognostic variables on multivariate analysis. To our knowledge, this is the first study to report the highly prognostic significance of ALK amplification in HR-NB. Relevance: As ALK can be targeted therapeutically, this study convincingly argues for the introduction of ALK inhibitors for upfront management of patients with HR-NB with ALK aberrations. Importantly, the prognostic significance of ALK alterations included a subgroup of trial patients treated with the current standard of care for HR-NB including anti-GD2 immunotherapy.info:eu-repo/semantics/publishedVersio

    Factors associated with recurrence and survival length following relapse in patients with neuroblastoma

    Get PDF
    Background: Despite therapeutic advances, survival following relapse for neuroblastoma patients remains poor. We investigated clinical and biological factors associated with length of progression-free and overall survival following relapse in UK neuroblastoma patients. Methods: All cases of relapsed neuroblastoma, diagnosed during 1990-2010, were identified from four Paediatric Oncology principal treatment centres. Kaplan-Meier and Cox regression analyses were used to calculate post-relapse overall survival (PROS), post-relapse progression-free survival (PRPFS) between relapse and further progression, and to investigate influencing factors. Results: One hundred eighty-nine cases were identified from case notes, 159 (84.0%) high risk and 17 (9.0%), unresectable, MYCN non-amplified (non-MNA) intermediate risk (IR). For high-risk patients diagnosed >2000, median PROS was 8.4 months (interquartile range (IQR)=3.0-17.4) and median PRPFS was 4.7 months (IQR=2.1-7.1). For IR, unresectable non-MNA patients, median PROS was 11.8 months (IQR 9.0-51.6) and 5-year PROS was 24% (95% CI 7-45%). MYCN amplified (MNA) disease and bone marrow metastases at diagnosis were independently associated with worse PROS for high-risk cases. Eighty percent of high-risk relapses occurred within 2 years of diagnosis compared with 50% of unresectable non-MNA IR disease. Conclusions: Patients with relapsed HR neuroblastomas should be treatment stratified according to MYCN status and PRPFS should be the primary endpoint in early phase clinical trials. The failure to salvage the majority of IR neuroblastoma is concerning, supporting investigation of intensification of upfront treatment regimens in this group to determine whether their use would diminish likelihood of relapse

    Convalescent plasma therapy for the treatment of patients with COVID‐19: Assessment of methods available for antibody detection and their correlation with neutralising antibody levels

    Get PDF
    Introduction The lack of approved specific therapeutic agents to treat coronavirus disease (COVID‐19) associated with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection has led to the rapid implementation of convalescent plasma therapy (CPT) trials in many countries, including the United Kingdom. Effective CPT is likely to require high titres of neutralising antibody (nAb) in convalescent donations. Understanding the relationship between functional neutralising antibodies and antibody levels to specific SARS‐CoV‐2 proteins in scalable assays will be crucial for the success of a large‐scale collection. We assessed whether neutralising antibody titres correlated with reactivity in a range of enzyme‐linked immunosorbent assays (ELISA) targeting the spike (S) protein, the main target for human immune response. Methods Blood samples were collected from 52 individuals with a previous laboratory‐confirmed SARS‐CoV‐2 infection. These were assayed for SARS‐CoV‐2 nAbs by microneutralisation and pseudo‐type assays and for antibodies by four different ELISAs. Receiver operating characteristic (ROC) analysis was used to further identify sensitivity and specificity of selected assays to identify samples containing high nAb levels. Results All samples contained SARS‐CoV‐2 antibodies, whereas neutralising antibody titres of greater than 1:20 were detected in 43 samples (83% of those tested) and >1:100 in 22 samples (42%). The best correlations were observed with EUROimmun immunoglobulin G (IgG) reactivity (Spearman Rho correlation coefficient 0.88; p 1:100 with 100% specificity using a reactivity index of 9.1 (13/22). Discussion Robust associations between nAb titres and reactivity in several ELISA‐based antibody tests demonstrate their possible utility for scaled‐up production of convalescent plasma containing potentially therapeutic levels of anti‐SARS‐CoV‐2 nAbs

    High frequency of subclonal ALK mutations in high risk neuroblastoma patients. A SIOPEN study

    Get PDF
    Introduction: In neuroblastoma (NB), activating ALK receptor tyrosine kinase point mutations are detected in 8–10% at diagnosis using conventional sequencing. To determine the potential occurrence and the prognostic impact of ALK mutations in a series of high risk NB patients we studied ALK variation frequencies using targeted deep sequencing in samples of patients enrolled in the SIOPEN HR-NBL01 stud
    corecore